Distance Integral Complete r-Partite Graphs

Ruosong Yang ${ }^{\text {a }}$, Ligong Wang ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

Abstract

Let $D(G)=\left(d_{i j}\right)_{n \times n}$ denote the distance matrix of a connected graph G with order n, where $d_{i j}$ is equal to the distance between vertices v_{i} and v_{j} in G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In this paper, we investigate distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1}, p_{1}, a_{2}, p_{2}, \ldots, a_{s} \cdot p_{s}}$ and give a sufficient and necessary condition for $K_{a_{1}, p_{1}, a_{2}, p_{2}, \ldots, a_{s}, p_{s}}$ to be distance integral, from which we construct infinitely many new classes of distance integral graphs with $s=1,2,3,4$. Finally, we propose two basic open problems for further study.

1. Introduction

Let G be a simple connected undirected graph with n vertices. The vertex set of G is denoted by $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $d_{i}=d\left(v_{i}\right)$ be the degree of the vertex v_{i} in G. The adjacency matrix of G, $A(G)=\left(a_{i j}\right)$ is an $n \times n$ matrix, where $a_{i j}=1$ if v_{i} and v_{j} are adjacent and $a_{i j}=0$ otherwise. The eigenvalues of $A(G)$, labeled as $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$, are said to be eigenvalues of G and form the adjacency spectrum of G. A graph is called integral if all its eigenvalues are integers. The signless Laplacian matrix of G is defined as $Q(G)=\operatorname{Deg}(G)+A(G)$, where $\operatorname{Deg}(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the diagonal matrix of the vertex degrees in G. The eigenvalues of $Q(G)$ are said to be the signless Laplacian eigenvalues or Q-eigenvalues of G. A graph G is called Q-integral if all its Q-eigenvalues are integers. The notion of integral graphs was first introduced by Harary and Schwenk in 1974 [14]. The study on integral graphs and Q-integral graphs has drawn many scholars' attentions. Results about them are found in [5, 7, 8, 13-16, 22, 26, 32] and [10, 23, 29, 34], respectively.

The distance between the vertices v_{i} and v_{j} is the length of a shortest path between them, and is denoted by $d_{i j}$. The distance matrix of G, denoted by $D(G)$, is the $n \times n$ matrix whose (i, j)-entry is equal to $d_{i j}$ for $i, j=1,2, \ldots, n$ (see [4]). Note that $d_{i i}=0, i=1,2, \ldots, n$. The distance characteristic polynomial (or D-polynomial) of G is $D_{G}(x)=\left|x I_{n}-D(G)\right|$, where I_{n} is the $n \times n$ identity matrix. The eigenvalues of $D(G)$ are said to be the distance eigenvalues or D-eigenvalues of G. Since $D(G)$ is a real symmetric matrix, the D-eigenvalues are real and can be labeled as $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}$. The distance spectral radius of G is the largest D-eigenvalue μ_{1} and denoted by $\mu(G)$. Assume that $\mu_{1}>\mu_{2}>\ldots>\mu_{t}$ are t distinct D-eigenvalues of G with the corresponding multiplicities $k_{1}, k_{2}, \ldots, k_{t}$. We denote by $\operatorname{Spec}(G)=\left(\begin{array}{ccccc}\mu_{t} & \mu_{t-1} & \ldots & \mu_{2} & \mu_{1} \\ k_{t} & k_{t-1} & \ldots & k_{2} & k_{1}\end{array}\right)$ the

[^0]Distance spectrum or the D-spectrum of G. Similarly to integral graphs, a graph is called distance integral if all its D-eigenvalues are integers. Many results about distance spectral radius and the D-eigenvalues of graphs can be found in $[1,3,9,17,19,20,27,28,31,35,36]$.

The energy of G was originally defined by Gutman in 1978 as the sum of the absolute values of the eigenvalues of $A(G)$ [11]. It is used in chemistry to approximate the total π-electron energy of molecules. Some results about graph energy can be found in [11, 12, 21, 24, 25, 28] and the book [33]. Based on the research of graph energy, the concept of distance energy of D-energy of a graph G defined as the sum of the absolute values of the eigenvalues of $D(G)$ was recently introduced by Indulal et al. in [18]. Several invariants of this type (as well as a few others) were studied by Consonni and Todeschini in [6] for possible use in QSPR modelling. Their study showed, among other things, that the distance energy is a useful molecular descriptor. Some results about D-energy can be found in [17, 18, 28, 30, 33, 36].

Our motivation for the research of distance integral graphs came from the work above. A complete r-partite $(r \geq 2)$ graph $K_{p_{1}, p_{2}, \cdots, p_{r}}$ is a graph with a set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$ of $p_{1}+p_{2}+\cdots+p_{r}(=n)$ vertices, where V_{i} 's are nonempty disjoint sets, $\left|V_{i}\right|=p_{i}$, such that two vertices in V are adjacent if and only if they belong to different V_{i}^{\prime} s. Assume that the number of distinct integers of $p_{1}, p_{2}, \cdots, p_{r}$ is s. Without loss of generality, assume that the first s ones are the distinct integers such that $p_{1}<p_{2}<\ldots<p_{s}$. Suppose that a_{i} is the multiplicity of p_{i} for each $i=1,2, \ldots, s$. The complete r-partite graph $K_{p_{1}, p_{2}, \cdots, p_{r}}=K_{p_{1}, \ldots, p_{1}, \ldots, p_{s}, \ldots, p_{s}}$ on
 distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$. We give a sufficient and necessary condition for the graph $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ to be distance integral, from which we construct infinitely many new classes of such distance integral graphs with $s=1,2,3,4$. Finally, we propose two basic open problems for further study.

2. A Sufficient and Necessary Condition for Complete r-Partite Graphs to be Distance Integral

In this section, we shall give a sufficient and necessary condition for complete r-partite graphs to be distance integral. Similar results for integrality of complete r-partite graphs were given in [32] and for Q-integrality of complete r-partite graphs were given in [34].

The following Theorem 2.1 has already been obtained by Lin et al. in [19] and by Stevanović et al. in [30], respectively.
Theorem 2.1. (See Theorem 4.1 of [19] or [30]) Let G be a complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}$ on n vertices. Then the D-polynomial of G is

$$
\begin{equation*}
D_{G}(x)=\prod_{i=1}^{r}(x+2)^{\left(p_{i}-1\right)} \prod_{i=1}^{r}\left(x-p_{i}+2\right)\left(1-\sum_{i=1}^{r} \frac{p_{i}}{x-p_{i}+2}\right) . \tag{1}
\end{equation*}
$$

Corollary 2.2. Let G be a complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, \ldots, a_{s} \cdot p_{s}}$ on n vertices. Then the D-polynomial of G is

$$
\begin{equation*}
D_{G}(x)=\prod_{i=1}^{s}(x+2)^{a_{i}\left(p_{i}-1\right)} \prod_{i=1}^{s}\left(x-p_{i}+2\right)^{a_{i}}\left(1-\sum_{i=1}^{s} \frac{a_{i} p_{i}}{x-p_{i}+2}\right) . \tag{2}
\end{equation*}
$$

Proof. We can easily obtain the result from Theorem 2.1.
From Corollary 2.2, we can obtain the following result.
Corollary 2.3. For the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ of order n, we have
(1) If $s=1$, then $K_{a_{1} \cdot p_{1}}=K_{p_{1}, \ldots, p_{1}}$ is distance integral, and its D-spectrum is

$$
\operatorname{Spec}\left(K_{a_{1}, p_{1}}\right)=\left(\begin{array}{ccc}
-2 & p_{1}-2 & n+p_{1}-2 \tag{3}\\
n-a_{1} & a_{1}-1 & 1
\end{array}\right)
$$

(2) If $s=2, a_{1}=a_{2}=1$, then $K_{p_{1}, p_{2}}$ is distance integral if and only if $\left(p_{1}^{2}+p_{2}^{2}-p_{1} p_{2}\right)$ is a perfect square.

Following result can also be obtained by Corollary 2.2.
Theorem 2.4. The complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1}, p_{1}, a_{2}, p_{2}, \ldots, a_{s}, p_{s}}$ on n vertices is distance integral if and only if

$$
\begin{equation*}
\prod_{i=1}^{s}\left(x-p_{i}+2\right)-\sum_{j=1}^{s} a_{j} p_{j} \prod_{i=1, i \neq j}^{s}\left(x-p_{i}+2\right)=0 \tag{4}
\end{equation*}
$$

has only integral roots.
We can get more information by discussing Eq.(4) of Theorem 2.4. First, we divide both sides of Eq.(4) by $\prod_{i=1}^{s}\left(x-p_{i}+2\right)$, and obtain the following equation.

$$
\begin{equation*}
\sum_{i=1}^{s} \frac{a_{i} p_{i}}{x-p_{i}+2}=1 \tag{5}
\end{equation*}
$$

Let $F(x)=1-\sum_{i=1}^{s} \frac{a_{i, p}}{x-p_{i}+2}$. Obviously, $x=\left(p_{i}-2\right)^{\prime}$'s are not roots of Eq.(4) for $1 \leq i \leq s$. Hence, all solutions of Eq.(4) are the same as those of Eq.(5). Now we consider the roots of $F(x)$ over the set of real numbers. Note that $F(x)$ is discontinuous at each point $x=p_{i}-2$. We obtain that $\lim _{x \rightarrow\left(p_{i}-2\right)^{-}} F(x)=+\infty, \lim _{x \rightarrow\left(p_{i}-2\right)^{+}} F(x)=$ $-\infty, \lim _{x \rightarrow-\infty} F(x)=\lim _{x \rightarrow+\infty} F(x)=1, F^{\prime}(x)=\sum_{i=1}^{s} \frac{a_{i} p_{i}}{\left(x-p_{i}+2\right)^{2}}$, for $1 \leq i \leq s$. We deduce that $F(x)$ is strictly monotone increasing on each of the continuous interval over the set of real numbers. By the Bolzano's Theorem or the Weierstrass Intermediate Value Theorem of Analysis, we get that $F(x)$ has s distinct real roots. If $-\infty<\mu_{1}<\mu_{2}<\cdots<\mu_{s-1}<\mu_{s}<+\infty$ are the roots of $F(x)$, then

$$
\begin{equation*}
-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\cdots<p_{s-1}-2<\mu_{s-1}<p_{s}-2<\mu_{s}<+\infty \tag{6}
\end{equation*}
$$

holds.
From the above discussion, we have the following result.
Theorem 2.5. The complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1}, p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s}, p_{s}}$ on n vertices is distance integral if and only if all the solutions of Eq.(5) are non-negative integers. Moreover, the graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1}, p_{1}, a_{2}, p_{2}, \ldots, a_{s}, p_{s}}$ is distance integral if and only if there exist integers $\mu_{1}, \mu_{2}, \ldots, \mu_{\text {s }}$ satisfying (6) such that the following linear equation system in $a_{1}, a_{2}, \ldots, a_{s}$

$$
\left\{\begin{array}{l}
\frac{a_{1} p_{1}}{\mu_{1}-p_{1}+2}+\frac{a_{2} p_{2}}{\mu_{1}-p_{2}+2}+\cdots+\frac{a_{s} p_{s}}{\mu_{1}-p_{s}+2}=1 \tag{7}\\
\frac{a_{1} p_{1}}{\mu_{s}-p_{1}+2}+\frac{a_{2} p_{2}}{\mu_{s}-p_{2}+2}+\cdots+\frac{a_{s} p_{s}}{\mu_{s}-p_{s}+2}=1
\end{array}\right.
$$

has positive integral solutions $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$.
Theorem 2.6. If the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1}, p_{1}, a_{2}, p_{2}, \ldots, a_{s}, p_{s}}$ on n vertices is distance integral then there exist integers $\mu_{i}(i=1,2, \ldots, s)$ such that $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\cdots<p_{s-1}-2<\mu_{s-1}<p_{s}-2<\mu_{s}<+\infty$ and the numbers $a_{1}, a_{2}, \ldots a_{s}$ defined by

$$
\begin{equation*}
a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, k=1,2, \ldots, s, \tag{8}
\end{equation*}
$$

are positive integers.
Conversely, suppose that there exist integers $\mu_{i}\left(i=1,2, \ldots\right.$, s) such that $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\cdots<$ $p_{s-1}-2<\mu_{s-1}<p_{s}-2<\mu_{s}<+\infty$ and that the numbers $a_{k}=\frac{\prod_{i=1}^{\mathrm{s}}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i ; k}\left(p_{i}-p_{k}\right)}(k=1,2, \ldots, s)$ are positive integers. Then the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1}, p_{1}, \ldots, a_{s}, p_{s}}$ is distance integral.

Proof. From Cauchy's result on determinants in [2], we know that

$$
\left|\begin{array}{cccc}
\frac{1}{\alpha_{1}+\beta_{1}} & \frac{1}{\alpha_{1}+\beta_{2}} & \cdots & \frac{1}{\alpha_{1}+\beta_{s}} \tag{9}\\
\frac{1}{\alpha_{2}+\beta_{1}} & \frac{1}{\alpha_{2}+\beta_{2}} & \cdots & \frac{1}{\alpha_{2}+\beta_{s}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{\alpha_{s}+\beta_{1}} & \frac{1}{\alpha_{s}+\beta_{2}} & \cdots & \frac{1}{\alpha_{s}+\beta_{s}}
\end{array}\right|=\frac{\prod_{1 \leq i<j \leq s}\left(\alpha_{j}-\alpha_{i}\right)\left(\beta_{j}-\beta_{i}\right)}{\prod_{1 \leq i, j \leq s}\left(\alpha_{i}+\beta_{j}\right)} .
$$

The determinant of the coefficient matrix D of the linear equation system (7) is the following:

$$
\begin{aligned}
& |D|=\left|\begin{array}{cccc}
\frac{p_{1}}{\mu_{1}-p_{1}+2} & \frac{p_{2}}{\mu_{1}-p_{2}+2} & \cdots & \frac{p_{s}}{\mu_{1}-p_{s}+2} \\
\mu_{2}-p_{1}+2 & \frac{p_{2}}{\mu_{2}-p_{2}+2} & \cdots & \frac{p_{s}}{\mu_{2}-p_{s}+2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{p_{1}}{\mu_{s}-p_{1}+2} & \frac{p_{2}}{\mu_{s}-p_{2}+2} & \cdots & \frac{p_{s}}{\mu_{s}-p_{s}+2}
\end{array}\right|=\prod_{i=1}^{s} p_{i}\left|\begin{array}{cccc}
\frac{1}{\mu_{1}-p_{1}+2} & \frac{1}{\mu_{1}-p_{2}+2} & \cdots & \frac{1}{\mu_{1}-p_{s}+2} \\
\frac{1}{\mu_{2}-p_{1}+2} & \frac{1}{\mu_{2}-p_{2}+2} & \cdots & \frac{1}{\mu_{2}-p_{s}+2} \\
\frac{1}{\mu_{s}-p_{1}+2} & \frac{1}{\mu_{s}-p_{2}+2} & \cdots & \frac{1}{\mu_{s}-p_{s}+2}
\end{array}\right| \\
& =\frac{\prod_{i=1}^{s} p_{i} \prod_{1 \leq i<j \leq s}\left(\mu_{j}-\mu_{i}\right)\left(p_{i}-p_{j}\right)}{\prod_{1 \leq i, j \leq s}\left(\mu_{i}-p_{j}+2\right)} \neq 0 .
\end{aligned}
$$

Moreover, for $k=1,2, \ldots, s$,

$$
\begin{aligned}
& \quad\left|D_{k}\right|=\left|\begin{array}{ccccccccc}
\frac{p_{1}}{\mu_{1}-p_{1}+2} & \frac{p_{2}}{\mu_{1}-p_{2}+2} & \cdots & \frac{p_{k-1}}{\mu_{1}-p_{k-1}+2} & 1 & \frac{p_{k+1}}{\mu_{1}-p_{k+1}+2} & \cdots & \frac{p_{s-1}}{\mu_{1}-p_{s}-1+2} & \frac{p_{s}}{\mu_{1}-p_{s}+2} \\
\vdots & \frac{p_{2}}{\mu_{2}+2} & \cdots & \frac{p_{k-1}}{\mu_{2}-p_{k-1}+2} & 1 & \frac{p_{k+1}}{\mu_{2}-p_{k+1}+2} & \cdots & & \frac{p_{s-1}}{\mu_{2}-p_{s-1}+2} \\
\frac{p_{s}}{\mu_{2}-p_{s}+2} \\
\frac{p_{1}}{\mu_{s}-p_{1}+2} & \frac{p_{2}}{\mu_{s}-p_{2}+2} & \cdots & \frac{p_{k-1}}{\mu_{s}-p_{k-1}+2} & 1 & \frac{p_{k+1}}{\mu_{s}-p_{k+1}+2} & \cdots & \frac{p_{s-1}}{\mu_{s}-p_{s-1}+2} & \frac{p_{s}}{\mu_{s}-p_{s}+2}
\end{array}\right| \\
& =-\lim _{p_{k} \rightarrow+\infty}|D| \\
& =\frac{\prod_{i=1, i \neq k}^{s} p_{i} \prod_{1 \leq i<j \leq s, i \neq k}\left(\mu_{j}-\mu_{i}\right)\left(p_{i}-p_{j}\right) \prod_{i=1, i \neq k}\left(\mu_{k}-\mu_{i}\right)}{\prod_{1 \leq i, j \leq s, j \neq k}\left(\mu_{i}-p_{j}+2\right)} .
\end{aligned}
$$

By using the well-known Cramer's Rule to solve the linear equation system (7) in $a_{1}, a_{2}, \ldots, a_{s}$, we get that

$$
\begin{equation*}
a_{k}=\frac{\left|D_{k}\right|}{|D|}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, \quad(k=1,2, \ldots, s) . \tag{10}
\end{equation*}
$$

If the graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ is distance integral, because μ_{i} and $a_{i}(i=1,2, \ldots, s)$ are integers, $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\cdots<p_{s-1}-2<\mu_{s-1}<p_{s}-2<\mu_{s}<+\infty$ and $p_{i} \geq 1$ for $i=1,2, \ldots, s$, we can deduce that $a_{k}>0(k=1,2, \ldots, s)$.

On the other hand, from Theorem 2.4, we obtain

$$
\prod_{i=1}^{s}\left(x-\mu_{i}\right)=\prod_{i=1}^{s}\left(x-p_{i}+2\right)-\sum_{j=1}^{s} a_{j} p_{j} \prod_{i=1, i \neq j}^{s}\left(x-p_{i}+2\right)
$$

Because $\mu_{i}(i=1,2, \ldots, s)$ are integers, from Corollary 2.2, the sufficient condition of the theorem can be easily proved.

Corollary 2.7. If the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on n vertices is distance integral with non-negative integral eigenvalues $\mu_{i}(i=1,2, \ldots, s)$ are those of Theorem 2.6 , then we get the following results:
(1) $\sum_{i=1}^{s} \mu_{i}=\sum_{i=1}^{s}\left(p_{i}-2\right)+n$, where $n=\sum_{i=1}^{s} a_{i} p_{i}$.
(2) $\prod_{i=1}^{s} \mu_{i}=\prod_{i=1}^{s}\left(p_{i}-2\right)\left(1+\sum_{i=1}^{s} \frac{a_{i} p_{i}}{p_{i}-2}\right)$.
(3) $\operatorname{Spec}\left(K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}\right)=\left(\begin{array}{cccccccc}-2 & p_{1}-2 & \mu_{1} & p_{2}-2 & \ldots & \mu_{s-1} & p_{s}-2 & \mu_{s} \\ n-\sum_{i=1}^{s} a_{i} & a_{1}-1 & 1 & a_{2}-1 & \ldots & 1 & a_{s}-1 & 1\end{array}\right)$

Proof. From Corollary 2.2, we can get that

$$
\begin{aligned}
D_{G}(x) & =\prod_{i=1}^{s}(x+2)^{a_{i}\left(p_{i}-1\right)} \prod_{i=1}^{s}\left(x-p_{i}+2\right)^{a_{i}-1}\left[\prod_{i=1}^{s}\left(x-p_{i}+2\right)-\sum_{j=1}^{s} a_{j} p_{j} \prod_{i=1, i \neq j}^{s}\left(x-p_{i}+2\right)\right] \\
& =\prod_{i=1}^{s}(x+2)^{a_{i}\left(p_{i}-1\right)} \prod_{i=1}^{s}\left(x-p_{i}+2\right)^{a_{i}-1} \prod_{i=1}^{s}\left(x-\mu_{i}\right) .
\end{aligned}
$$

By using the relationship between roots and coefficients of polynomials, we obtain the results in (1)-(3).
In order to study the relationship between the distance integral complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=$ $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ and vectors $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{s}\right), \vec{p}=\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathbb{Z}^{s}$, we have the following lemma.

Lemma 2.8. Define

$$
\psi_{\vec{a}, \vec{p}}(x)=\sum_{i=1}^{s} \frac{a_{i} p_{i}}{x-p_{i}+2}, \phi_{\vec{a}, \vec{p}}(x)=\prod_{i=1}^{s}\left(x-p_{i}+2\right)\left(1-\psi_{\vec{a}, \vec{p}}(x)\right)
$$

where $n=\sum_{i=1}^{s} a_{i} p_{i}$, vectors $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{s}\right), \vec{p}=\left(p_{1}, p_{2}, \ldots, p_{s}\right) \in \mathbb{Z}^{s}$. Let q be a nonzero integer.Then μ is an integral root of $\phi_{\vec{a}, q \vec{p}}(x)$ if and only if $[(\mu+2) / q]-2$ is an integral root of $\phi_{\vec{a}, \vec{p}}(x)$.

Proof. It is obvious that α is a root of $\phi_{\vec{a}, \vec{p}}(x)$ if and only if $q(\alpha+2)-2$ is a root of $\phi_{\vec{a}, \vec{p}}(x)$, therefore if all the roots of $\phi_{\vec{a}, \vec{p}}(x)$ are integers, then the roots of $\phi_{\vec{a}, q \vec{p}}(x)$ are integers as well.

Assume now that all roots of $\phi_{\vec{a}, q \vec{p}}(x)$ are integral and let α be one of them, then $[(\alpha+2) / q]-2$ is a rational root of $\phi_{\vec{a}, \vec{p}}(x)$. Since $\phi_{\vec{a}, \vec{p}}(x)$ is a monic polynomial with integral coefficients, its rational roots should be integers. Therefore $[(\alpha+2) / q]-2 \in \mathbb{Z}$.

Corollary 2.9. For any positive integer q, the complete r-partite graph $K_{p_{1} q, p_{2} q, \ldots, p_{r} q}=K_{a_{1} \cdot p_{1} q, a_{2} \cdot p_{2} q, \ldots, a_{s} \cdot p_{s} q}$ is distance integral if and only if the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}=K_{a_{1}, p_{1}, a_{2}, p_{2}, \ldots, a_{s}, p_{s}}}$ is distance integral.

Remark 2.10. Let $G C D\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ denote the greatest common divisor of the numbers $p_{1}, p_{2}, \ldots, p_{s}$. We say that a vector $\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ is primitive if $G C D\left(p_{1}, p_{2}, \ldots, p_{s}\right)=1$. Corollary 2.9 shows that it is reasonable to study Eq.(5) only for primitive vectors ($p_{1}, p_{2}, \ldots, p_{s}$).

3. Distance Integral Complete r-Partite Graphs

In this section, we shall construct infinitely many new classes of distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ with $s=2,3,4$.

The main idea for constructing such distance integral graphs is as follows:
(i) We properly choose positive integers $p_{1}, p_{2}, \ldots, p_{s}$.
(ii) We try to find integers $\mu_{i}(i=1,2, \ldots, s)$ satisfying (6) such that there are positive integral solutions $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ for the linear equation system (7) (or such that all $a_{k}^{\prime} s$ of (8) are positive integers).
(iii) We can obtain integers $a_{1}, a_{2}, \ldots, a_{s}$ such that all the solutions of Eq. (5) are integers. Thus, we have constructed many new classes of distance integral graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$.

Theorem 3.1. For $s=2$, let $p_{1}<p_{2}$. Then $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}}$ of order n is distance integral if and only if one of the following two conditions holds:
(i) When $\operatorname{GCD}\left(p_{1}, p_{2}\right)=1$, let $\mu_{1}=p_{1}+q-2,1 \leq q<p_{2}-p_{1}$, where q is a positive integer. Then, a_{1} and a_{2} must be the positive integral solutions for the Diophantine equation

$$
\begin{equation*}
q p_{2} a_{2}+p_{1}\left(p_{1}-p_{2}+q\right) a_{1}=q\left(p_{1}-p_{2}+q\right) . \tag{11}
\end{equation*}
$$

(ii) When $\operatorname{GCD}\left(p_{1}, p_{2}\right)=d \geq 2$, let $p_{1}=p_{1}^{\prime} d, p_{2}=p_{2}^{\prime} d, G C D\left(p_{1}^{\prime}, p_{2}^{\prime}\right)=1, \mu_{1}=p_{1}+q-2, q=q^{\prime} d, 1 \leq q^{\prime}<p_{2}^{\prime}-p_{1}^{\prime}$, where $p_{1}^{\prime}, p_{2}^{\prime}, q^{\prime}$ and d are positive integers. Then, a_{1} and a_{2} must be positive integral solutions for the Diophantine equation

$$
\begin{equation*}
q^{\prime} p_{2}^{\prime} a_{2}+p_{1}^{\prime}\left(p_{1}^{\prime}-p_{2}^{\prime}+q^{\prime}\right) a_{1}=q^{\prime}\left(p_{1}^{\prime}-p_{2}^{\prime}+q^{\prime}\right) . \tag{12}
\end{equation*}
$$

Proof. Since $p_{1}<p_{2}$, from Theorem 2.6, we know $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}}$ is distance integral if and only if there exist integers μ_{1}, μ_{2} and positive integers p_{1}, p_{2} such that $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}$ and

$$
a_{1}=\frac{\left(\mu_{1}-p_{1}+2\right)\left(\mu_{2}-p_{1}+2\right)}{p_{1}\left(p_{2}-p_{1}\right)}, a_{2}=\frac{\left(\mu_{1}-p_{2}+2\right)\left(\mu_{2}-p_{2}+2\right)}{p_{2}\left(p_{1}-p_{2}\right)}
$$

are positive integers.
Hence, we choose $\mu_{1}=p_{1}+q-2,1 \leq q<p_{2}-p_{1}$, where q is a positive integer, and we obtain

$$
a_{1}=\frac{q\left(\mu_{2}-p_{1}+2\right)}{p_{1}\left(p_{2}-p_{1}\right)}, a_{2}=\frac{\left(p_{1}-p_{2}+q\right)\left(\mu_{2}-p_{2}+2\right)}{p_{2}\left(p_{1}-p_{2}\right)}
$$

Then, we get Eq.(11). From elementary number theory, we know there are solutions for Eq.(11) if and only if $d_{1} \mid q\left(p_{1}-p_{2}+q\right)$, where $d_{1}=G C D\left(q p_{2}, p_{1}\left(p_{1}-p_{2}+q\right)\right)$.

Now, we discuss two cases.
Case 1. When $\operatorname{GCD}\left(p_{1}, p_{2}\right)=1$, we have $d_{1} \mid q\left(p_{1}-p_{2}+q\right)$. Moreover, there are solutions for Eq.(11). From elementary number theory and the condition $G C D\left(p_{1}, p_{2}\right)=1$, we know that there are infinitely many integral solutions for Eq.(11). Therefore, there are infinitely many positive integral solutions $\left(a_{1}, a_{2}\right)$ for Eq.(11).

Case 2. When $G C D\left(p_{1}, p_{2}\right)=d \geq 2$, let $p_{1}=p_{1}^{\prime} d, p_{2}=p_{2}^{\prime} d, G C D\left(p_{1}^{\prime}, p_{2}^{\prime}\right)=1$, where $p_{1}^{\prime}, p_{2}^{\prime}$ and d are positive integers. We have $d_{1}=G C D\left(q p_{2}, p_{1}\left(p_{1}-p_{2}+q\right)\right)=G C D\left(q p_{2}^{\prime} d, p_{1}^{\prime} d\left(p_{1}^{\prime} d-p_{2}^{\prime} d+q\right)\right)$. If $d_{1} \mid q\left(p_{1}-p_{2}+q\right)=$ $q\left(p_{1}^{\prime} d-p_{2}^{\prime} d+q\right)$, then $d \mid q$. Thus, let $q=q^{\prime} d, 1 \leq q^{\prime}<\left(p_{2}^{\prime}-p_{1}^{\prime}\right)$, where q^{\prime} is a positive integer. We can reduce (11) and (12). Hence, from elementary number theory and the condition $G C D\left(p_{1}^{\prime}, p_{2}^{\prime}\right)=1$, we know that there are infinitely many integral solutions for Eq.(12). Therefore, there are infinitely many positive integral solutions (a_{1}, a_{2}) for Eq.(12).

Theorem 3.2. Let a complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ be distance integral with eigenvalues μ_{i}. Let $\mu_{i}(\geq 0)$ and $p_{i}(>0)(i=1,2, \ldots, s)$ be integers such that $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\cdots<p_{s-1}-2<$ $\mu_{s-1}<p_{s}-2<\mu_{s}<+\infty$ and

$$
\begin{equation*}
a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, k=1,2, \ldots, s \tag{13}
\end{equation*}
$$

are positive integers, then for

$$
\begin{align*}
& b_{k}=\frac{\prod_{i=1}^{s-1}\left(\mu_{i}-p_{k}+2\right)\left(\mu_{s}-p_{k}+2+r t\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, k=1,2, \ldots, s, \tag{14}\\
& r=\operatorname{LCM}\left(r_{1}, r_{2}, \ldots, r_{s}\right), r_{k}=\frac{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}{d_{k}}, k=1,2, \ldots, s, \tag{15}\\
& d_{k}=G C D\left(\prod_{i=1}^{s-1}\left(\mu_{i}-p_{k}+2\right), p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)\right), k=1,2, \ldots, s, \tag{16}
\end{align*}
$$

the complete m-partite graph $K_{p_{1}, p_{2}, \ldots, p_{m}}=K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ is distance integral for every nonnegative integer t with eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{s-1}, \mu_{s}^{\prime}=\mu_{s}+r$. (Similar results for integral complete multipartite graphs were given in [16])

Proof. From (14) for every $k=1,2, \ldots, s$ after simplification we get $b_{k}=a_{k}+\frac{r t \prod_{i=1}^{s-1}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i k k}^{i}\left(p_{i}-p_{k}\right)}$. Since $r=$ $\operatorname{LCM}\left(r_{1}, r_{2}, \ldots, r_{s}\right), r_{k}=\frac{p_{k} \prod_{i=1, i k}^{s}\left(p_{i}-p_{k}\right)}{d_{k}}, b_{k}$ is an integer for every $k=1,2, \ldots, s$. Let us denote $\mu_{s}^{\prime}=\mu_{s}+r t$. As $\mu_{s} \leq \mu_{s}^{\prime}<+\infty$, by Theorem 2.6 the graph $K_{p_{1}, p_{2}, \ldots, p_{m}}=K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ is distance integral.

Theorem 3.3. For $s=3$, integers $p_{i}(>0), a_{i}(>0)$ and $\mu_{i}(i=1,2,3)$ are given in Table 1. p_{i}, a_{i} and $\mu_{i}(i=1,2,3)$ are
 is distance integral.

Table 1: Distance integral complete r-partite graphs $K_{a_{1}} \cdot p_{1}, a_{2} \cdot p_{2}, a_{3} \cdot p_{3}$.

p_{1}	p_{2}	p_{3}	a_{1}	a_{2}	a_{3}	μ_{1}	μ_{2}	μ_{3}	p_{1}	p_{2}	p_{3}	a_{1}	a_{2}	a_{3}	μ_{1}	μ_{2}	μ_{3}
1	6	14	6	1	3	0	5	64	2	4	9	6	2	2	1	4	42
2	5	9	6	2	4	1	4	63	2	5	15	8	5	2	1	8	78
2	6	15	10	7	4	1	8	130	2	7	11	5	2	4	1	6	75
2	9	12	4	2	3	1	8	70	2	9	13	9	7	5	1	9	154
2	9	17	7	1	1	3	10	49	2	10	17	7	4	6	1	10	168
2	12	21	6	3	6	1	12	190	3	5	12	4	1	4	2	4	73
3	5	12	8	4	2	2	7	73	3	7	12	8	6	6	2	7	145
3	7	15	5	1	2	3	7	61	3	8	12	2	1	2	2	7	46
3	8	12	7	1	1	4	8	46	3	8	14	8	8	5	2	9	166
3	9	19	7	9	3	2	13	169	3	10	15	3	1	1	3	10	43
3	11	21	7	1	1	5	13	64	3	12	20	4	4	4	2	13	154
4	6	15	10	6	2	3	10	112	4	7	12	9	1	5	4	6	110
4	9	18	8	3	4	4	10	142	4	10	15	2	2	2	3	10	68
4	11	16	4	1	3	4	10	86	4	12	15	10	7	3	4	12	178
5	8	12	7	6	5	4	8	150	5	9	12	4	3	5	4	8	115
5	9	18	5	7	2	4	13	133	5	10	18	2	3	1	4	13	68
5	11	20	7	2	2	6	13	108	5	12	17	3	2	1	5	13	66
5	12	18	2	3	2	4	13	94	5	12	20	10	3	4	6	13	178
5	13	17	9	6	5	5	13	219	5	14	20	6	1	4	6	13	138
5	15	24	3	6	3	4	18	193	6	9	14	2	2	1	5	10	52
6	11	13	8	10	9	5	10	284	6	13	22	5	10	5	5	16	284
6	14	21	2	4	2	5	16	124	6	15	22	9	7	7	6	16	328
7	10	20	8	9	6	6	13	278	7	11	17	9	4	4	7	12	185
7	11	21	8	3	6	7	12	229	7	15	18	9	5	9	7	14	313
7	15	25	7	4	2	8	19	173	7	16	24	2	5	2	6	19	158
8	11	13	9	2	3	8	10	141	8	11	16	7	1	6	8	10	174
8	11	18	2	2	2	7	12	86	8	13	20	4	3	1	8	16	102
8	15	24	5	1	2	10	16	118	8	18	27	2	6	2	7	22	196
9	12	20	3	4	1	8	16	106	9	15	20	1	2	1	8	16	73
9	15	25	3	7	3	8	19	223	9	16	20	3	6	5	8	16	238
9	16	20	8	2	6	10	15	238	9	16	20	9	4	4	10	16	238
9	16	20	10	6	2	10	17	238	9	19	26	7	6	2	10	22	245
10	13	22	2	2	3	9	14	128	10	15	24	4	3	2	10	18	148
10	17	26	6	4	1	11	22	168	$/$	$/$	$/$	$/$	$/$	$/$	$/$	$/$	$/$

Proof. From Theorem 2.6, we know that the complete multipartite graph $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on n vertices is distance integral if and only if there exist integers μ_{i} and positive integers $p_{i}(i=1,2, \ldots, s)$ such that (6) holds and $a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}(k=1,2, \ldots, s)$ are positive integers.

By Corollary 2.7(1), we know $\sum_{i=1}^{3} \mu_{i}=\sum_{i=1}^{3}\left(p_{i}-2\right)+n$, where $n=\sum_{i=1}^{3} a_{i} p_{i}$. It deduces that $\mu_{3}=-\mu_{1}-\mu_{2}+$ $\sum_{i=1}^{3}\left(p_{i}-2\right)+n$.

From Corollary 2.9, we need only consider the case $\left(p_{1}, p_{2}, \ldots, p_{s}\right)=1$. Hence, when $s=3$, it is sufficient to find only all positive integers $p_{i}, a_{i}(i=1,2,3), \mu_{1}, \mu_{2}$ and μ_{3} for the following equations:

$$
\begin{equation*}
a_{1}=\frac{\left(\mu_{1}-p_{1}+2\right)\left(\mu_{2}-p_{1}+2\right)\left(-\mu_{1}-\mu_{2}+p_{2}+p_{3}+n-4\right)}{p_{1}\left(p_{2}-p_{1}\right)\left(p_{3}-p_{1}\right)} \tag{17}
\end{equation*}
$$

$$
\begin{align*}
& a_{2}=\frac{\left(\mu_{1}-p_{2}+2\right)\left(\mu_{2}-p_{2}+2\right)\left(-\mu_{1}-\mu_{2}+p_{1}+p_{3}+n-4\right)}{p_{2}\left(p_{1}-p_{2}\right)\left(p_{3}-p_{2}\right)}, \tag{18}\\
& a_{3}=\frac{\left(\mu_{1}-p_{3}+2\right)\left(\mu_{2}-p_{3}+2\right)\left(-\mu_{1}-\mu_{2}+p_{1}+p_{2}+n-4\right)}{p_{3}\left(p_{2}-p_{3}\right)\left(p_{1}-p_{3}\right)} . \tag{19}
\end{align*}
$$

By using a computer search, we have found 67 integral solutions satisfying $G C D\left(p_{1}, p_{2}, p_{3}\right)=1$ for (17), (18) and (19). They are listed in Table 1, where $1 \leq p_{1} \leq 10, p_{1}+1 \leq p_{2} \leq p_{1}+10, p_{2}+1 \leq p_{3} \leq p_{2}+10$, $1 \leq a_{1} \leq 10,1 \leq a_{2} \leq 10,1 \leq a_{3} \leq 10, p_{1}-2<\mu_{1}<p_{2}-2, p_{2}-2<\mu_{2}<p_{3}-2$, and $n=\sum_{i=1}^{3} a_{i} p_{i}$. By Corollary 2.9, it follows that these graphs $K_{a_{1} \cdot p_{1} q, a_{2} \cdot p_{2} q, a_{3} \cdot p_{3} q}$ are distance integral for any positive integer q.

Theorem 3.4. For $s=3$, let $p_{i}(>0), a_{i}(>0)$ and $\mu_{i}(>0)(i=1,2,3)$ be those of Theorem 2.6. Then for any positive
 $a_{2}=7 t+2, a_{3}=8 t+2, \mu_{1}=1, \mu_{2}=4, \mu_{3}=140 t+42$, and $n=\sum_{i=1}^{3} a_{i} p_{i}=140 t+38$, where t is a nonnegative integer.

Proof. The proof directly follows from Theorem 3.2 and Corollary 2.9.

Remark 3.5. Similarly to Theorem 3.4 it is possible to find conditions for parameters $\mu_{3}, a_{i}(i=1,2,3)$ which depend on t for each graph in Table 1. In this way we get new classes of distance integral graphs.

Theorem 3.6. For $s=4$, integers $p_{i}(>0), a_{i}(>0)$ and $\mu_{i}(i=1,2,3)$ are given in Table 2. p_{i}, a_{i} and $\mu_{i}(i=1,2,3,4)$ are those of Theorem 2.6, where $G C D\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=1$. Then for any positive integer q the graph $K_{a_{1} \cdot p_{1} q, a_{2} \cdot p_{2} q \text {, }}$ $a_{3} \cdot p_{3} q, a_{4} \cdot p_{4} q$ on n vertices is distance integral.

p_{1}	p_{2}	p_{3}	p_{4}	a_{1}	a_{2}	a_{3}	a_{4}	μ_{1}	μ_{2}	μ_{3}	μ_{4}
1	6	13	22	95	5	10	1	2	6	19	284
1	6	22	40	183	16	8	2	2	12	34	548
1	8	21	26	171	5	2	8	4	11	20	474
1	9	16	36	115	15	1	8	2	13	19	574
1	9	25	36	32	7	3	1	1	14	31	223
1	11	16	26	56	2	2	2	4	11	19	174
1	11	17	27	93	1	1	2	7	12	19	185
1	11	19	24	196	3	2	2	7	14	20	321
1	11	22	36	256	6	7	2	6	14	31	559
1	16	31	56	108	10	1	3	4	26	39	494
1	16	31	56	135	14	2	1	4	26	49	494
2	5	17	21	33	13	21	6	1	5	18	627
2	8	17	35	114	23	8	2	3	12	30	627
3	8	15	21	107	7	6	8	5	10	16	643
3	15	19	33	47	3	1	2	9	16	25	283
4	12	19	24	68	8	2	11	7	14	18	682
4	16	34	49	24	14	3	2	5	26	42	542
5	8	19	21	27	6	6	6	5	10	18	435
5	9	17	35	28	4	1	6	6	13	19	423
7	11	16	20	13	2	2	1	8	12	17	174
7	22	31	52	30	10	4	2	11	26	45	680
9	18	34	42	9	2	1	3	12	22	34	304
13	22	29	38	25	5	5	1	17	24	35	636
15	24	35	42	15	4	1	1	19	31	38	418

Proof. From Theorem 2.6, we know that the complete multipartite graph $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on n vertices is distance integral if and only if there exist integers μ_{i} and positive integers $p_{i}(i=1,2, \ldots, s)$ such that (6) holds and $a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i+k}\left(p_{i}-p_{k}\right)}(k=1,2, \ldots, s)$ are positive integers.

By Corollary 2.7(1), we know $\sum_{i=1}^{4} \mu_{i}=\sum_{i=1}^{4}\left(p_{i}-2\right)+n, n=\sum_{i=1}^{4} a_{i} p_{i}$. It deduces that

$$
\mu_{4}=-\mu_{1}-\mu_{2}-\mu_{3}+\sum_{i=1}^{4}\left(p_{i}-2\right)+n
$$

From Corollary 2.9, we need only consider the case $\left(p_{1}, p_{2}, \ldots, p_{s}\right)=1$. Hence, when $s=4$, it is sufficient to find only all positive integers $p_{i}, a_{i}(i=1,2,3,4), \mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} for the following equations:

$$
\begin{align*}
& a_{1}=\frac{\left[\prod_{i=1}^{3}\left(\mu_{i}-p_{1}+2\right)\right]\left(\sum_{i=1}^{4}\left(p_{i}-2\right)+n-\mu_{1}-\mu_{2}-\mu_{3}-p_{1}+2\right)}{p_{1}\left(p_{2}-p_{1}\right)\left(p_{3}-p_{1}\right)\left(p_{4}-p_{1}\right)}, \tag{20}\\
& a_{2}=\frac{\left[\prod_{i=1}^{3}\left(\mu_{i}-p_{2}+2\right)\right]\left(\sum_{i=1}^{4}\left(p_{i}-2\right)+n-\mu_{1}-\mu_{2}-\mu_{3}-p_{2}+2\right)}{p_{2}\left(p_{1}-p_{2}\right)\left(p_{3}-p_{2}\right)\left(p_{4}-p_{2}\right)}, \tag{21}\\
& a_{3}=\frac{\left[\prod_{i=1}^{3}\left(\mu_{i}-p_{3}+2\right)\right]\left(\sum_{i=1}^{4}\left(p_{i}-2\right)+n-\mu_{1}-\mu_{2}-\mu_{3}-p_{3}+2\right)}{p_{3}\left(p_{1}-p_{3}\right)\left(p_{2}-p_{3}\right)\left(p_{4}-p_{3}\right)}, \tag{22}\\
& a_{4}=\frac{\left[\prod_{i=1}^{3}\left(\mu_{i}-p_{4}+2\right)\right]\left(\sum_{i=1}^{4}\left(p_{i}-2\right)+n-\mu_{1}-\mu_{2}-\mu_{3}-p_{4}+2\right)}{p_{4}\left(p_{1}-p_{4}\right)\left(p_{2}-p_{4}\right)\left(p_{3}-p_{4}\right)} . \tag{23}
\end{align*}
$$

By using a computer search, we have found 24 integral solutions satisfying $G C D\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=1$ for (20), (21), (22) and (23). They are listed in Table 2, where $1 \leq p_{1} \leq 15, p_{1}+1 \leq p_{2} \leq p_{1}+15, p_{2}+1 \leq p_{3} \leq p_{2}+20$, $p_{3}+1 \leq p_{4} \leq p_{3}+25, \mu_{4}<700, p_{1}-2<\mu_{1}<p_{2}-2, p_{2}-2<\mu_{2}<p_{3}-2, p_{3}-2<\mu_{3}<p_{4}-2$, and $n=\sum_{i=1}^{4} a_{i} p_{i}$. By Corollary 2.9, it follows that these graphs $K_{a_{1} \cdot p_{1} q, a_{2} \cdot p_{2} q, a_{3} \cdot p_{3} q, a_{4} \cdot p_{4} q}$ are distance integral for any positive integer q.

According to Theorem 3.2, we can obtain the following theorem.
Theorem 3.7. For $s=4$, let $p_{i}(>0), a_{i}(>0)$ and $\mu_{i}(>0)(i=1,2,3,4)$ be those of Theorem 2.6. Then for any positive integer q, the complete multipartite graphs $K_{a_{1}} \cdot p_{1} q, a_{2} \cdot p_{2} q, a_{3} \cdot p_{3} q, \ldots, a_{4} \cdot p_{4} q$ with n vertices are distance integral if $p_{1}=1$, $p_{2}=6, p_{3}=13, p_{4}=22, \mu_{1}=2, \mu_{2}=6, \mu_{3}=19$ and $\mu_{4}=24024 t+284, a_{1}=8008 t+95, a_{2}=429 t+5$, $a_{3}=880 t+10$ and $a_{4}=91 t+1, n=\sum_{i=1}^{4} a_{i} p_{i}=24024 t+277$, where t is a nonnegative integer.

Proof. The proof directly follows from Theorem 3.2 and Corollary 2.9.

Remark 3.8. Similarly to Theorem 3.7 it is possible to find conditions for parameters $\mu_{4}, a_{i}(i=1,2,3,4)$ which depend on t for each graph in Table 2. In this way we get new classes of distance integral graphs.

4. Further Discussion

 integral graphs in this paper. However, when $s \geq 5$, we have not found such distance integral graphs. We tried to get some general results. Thus we raise the following questions:

Question 4.1. Are there any distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, \ldots, a_{s} \cdot p_{s}}$ when $s \geq 5$?
For complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$, when $s=1,2$, and $a_{1}=a_{2}=\ldots=a_{s}=1$, some results about such distance integral graphs have been obtained in this paper. However, when $s \geq 3$, $a_{1}=a_{2}=\ldots=a_{s}=1$, we have not found such distance integral graphs. Hence, we raise the following question:

Question 4.2. Are there any distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ with $a_{1}=a_{2}=$ $\ldots=a_{s}=1$ when $s \geq 3$?

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous referee for his comments and remarks, which improved the presentation of this paper.

References

[1] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21-33.
[2] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Springer, New York, Berlin, Heidelberg, 1995 106-107.
[3] S.S. Bose, M. Nath, S. Paul, Distance spectral radius of graphs with r pendent vertices, Linear Algebra Appl. 435 (2011) $2828-2836$.
[4] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[5] K.T. Balińska, D. Cvetković, Z. Radosavljević, S. K. Simić, D. Stevanović, A survey on integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002) 42-65.
[6] V. Consonni, R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.
[7] P. Csikvári, Integral trees of arbitrarily large diameters, Journal of Algebraic Combinatorics, 32(3) (2010) 371-377.
[8] D. Cvetković, P. Rowlinson, S.K. Simić, An introduction to the theory of graph spectra, Cambridge: Cambridge University Press, 2010.
[9] K.C. Das, On the largest eigenvalue of the distance matrix of a bipartite graph, MATCH Commun. Math. Comput. Chem. 62 (2009) 667-672.
[10] M.A.A. de Freitas, N.M.M. de Abreu, R.R. Del-Vecchio, S. Jurkiewicz, Infinite families of Q-integral graphs, Linear Algebra Appl. 432 (2010) 2352-2360.
[11] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz, 103 (1978) 1-22.
[12] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001 196-211.
[13] E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie, Integral trees of odd diameters, J. Graph Theory. 70 (2012) 332-338.
[14] F. Harary, A.J. Schwenk, Which graphs have integral spectra?, in: R. Bari, F. Harary(Eds.), Graphs and Combinatorics, in: Lecture Notes in Mathematics, vol. 406, Springer-Verlag, Berlin, 1974 45-51.
[15] P. Híc, M. Pokorný, Integral complete 4-partite graphs, Discrete Math. 308 (2008) 3704-3705.
[16] P. Híc, M. Pokorný, New classes of integral complete n-partite graphs, Advances and Applications in Discrete Mathematics, Volume 7, Number 2, Pushpa Publishing House, India, (2011) 83-94. ISSN 0974-1658.
[17] G. Indulal, I. Gutman, On the distance spectra of some graphs, Math. Commun. 13 (2008) 123-131.
[18] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 461-472.
[19] H.Q. Lin, Y. Hong, J.F. Wang, J.L. Shu, On the distance spectrum of graphs, Linear Algebra Appl. 439 (2013) 1662-1669.
[20] R. Merris, The distance spectrum of a tree, J. Graph Theory 14 (1990) 365-369.
[21] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.
[22] M. Pokorný, A note on integral complete multipartite graphs $K_{a_{1} \cdot p_{1}, \ldots, a_{s} \cdot p_{s}}$ with $s=7$, Advances and Applications in Discrete Mathematics, Volume 13, Number 1, Pushpa Publishing House, India, (2014) 1-8. ISSN 0974-1658.
[23] M. Pokorný, P. Híc, D. Stevanović, Remarks on Q-integral complete multipartitie graphs, Linear Algebra Appl. 439 (2013) 2029-2037.
[24] H.S. Ramane, H.B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) $203-210$.
[25] I. Shparlinski, On the energy of some circulant graphs, Linear. Algebra Appl. 414 (2006) 378-382.
[26] D. Stevanović, N.M.M. de Abreu, M.A.A. de Freitas, R. Del-Vecchio, Walks and regular integral graphs, Linear Algebra Appl. 423 (2007) 119-135
[27] D. Stevanović, A. Ilić, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) $168-179$.
[28] D. Stevanović, G. Indulal, The distance spectrum and energy of the compositions of regular graphs, Appl. Math. Lett. 22 (2009) 1136-1140.
[29] S.K. Simić, Z. Stanić, Q-integral graphs with edge-degrees at most five, Discrete Math. 308 (2008) 4625-4634.
[30] D. Stevanović, M. Milosević, P. Híc, M. Pokorný, Proof of a conjecture on distance energy of complete multipartite graphs, MATCH Commun. Math. Comput. Chem. 70 (2013), 157-162.
[31] Y.N. Wang, B. Zhou, On distance spectral radius of graphs, Linear Algebra Appl. 438 (2013) 3490-3503.
[32] L.G. Wang, X.L. Li, C. Hoede, Integral complete r-partite graphs, Discrete Math. 283 (2004) 231-241.
[33] X.L. Li, Y.T. Shi, I. Gutman, Graph Energy, Springer, New York, Heidelberg, Dordrecht, London, 2012.
[34] G.P. Zhao, L.G. Wang, K. Li, Q-integral complete r-partite graphs, Linear Algebra Appl. 438 (2013) 1067-1077.
[35] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Commun. Math. Comput. Chem. 58 (2007) $657-662$.
[36] B. Zhou, and A. Ilić, On distance spectral radius and distance energy of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 261-280.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 05C12, 11D04, 11D72
 Keywords. Complete r-partite graph, Distance matrix, Distance integral, Graph spectrum.
 Received: 24 September 2013; Accepted: 21 July 2014
 Communicated by Vladimir Muller
 Corresponding author: Ligong Wang
 Research supported by the National Natural Science Foundation of China (No.11171273) and Graduate Starting Seed Fund of Northwestern Polytechnical University (No.Z2014173).

 Email addresses: lnxyangruosong@163.com (Ruosong Yang), lgwangmath@163.com (Ligong Wang)

